计算两个多维NumPy数组的克朗克乘积
给定一个m X n矩阵A和一个p X q矩阵B,它们的克朗克积是A⊗B,也叫它们的矩阵直积,是一个(m*p)X(n*q)矩阵。
A = | (a00) (a01) | | (a10) (a11) | B = | (b00) (b01) | | (b10) (b11) | A ⊗ B = | (a00)*(b00) (a00)*(b01) (a01)*(b00) (a01)*(b00) | | (a00)*(b01) (a00)*(b11) (a01)*(b01) (a01)*(b11) | | (a10)*(b00) (a10)*(b01) (a11)*(b00) (a11)*(b01) | | (a10)*(b10) (a10)*(b11) (a11)*(b10) (a11)*(b11) |
两个给定的多维数组的克朗克积可以通过NumPy模块中的kron()方法来计算。kron()方法接收两个数组作为参数,并返回这两个数组的克朗克乘积。
语法:
numpy.kron(array1, array2)
下面是一些程序,描述了kron()方法在计算两个数组的克朗克乘积时的实现。
示例 1:
# Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2], [3, 4]]) print('Array1:\n', array1) array2 = numpy.array([[5, 6], [7, 8]]) print('\nArray2:\n', array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print('\nArray1 ⊗ Array2:') print(kroneckerProduct)
输出:
Array1: [[1 2] [3 4]] Array2: [[5 6] [7 8]] Array1 ⊗ Array2: [[ 5 6 10 12] [ 7 8 14 16] [15 18 20 24] [21 24 28 32]]
示例 2:
# Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2, 3]]) print('Array1:\n', array1) array2 = numpy.array([[3, 2, 1]]) print('\nArray2:\n', array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print('\nArray1 ⊗ Array2:') print(kroneckerProduct)
输出:
Array1: [[1 2 3]] Array2: [[3 2 1]] Array1 ⊗ Array2: [[3 2 1 6 4 2 9 6 3]]
示例 3:
# Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2, 3], [4, 5, 6]]) print('Array1:\n', array1) array2 = numpy.array([[1, 2], [3, 4], [5, 6]]) print('\nArray2:\n', array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print('\nArray1 ⊗ Array2:') print(kroneckerProduct)
输出:
Array1: [[1 2 3] [4 5 6]] Array2: [[1 2] [3 4] [5 6]] Array1 ⊗ Array2: [[ 1 2 2 4 3 6] [ 3 4 6 8 9 12] [ 5 6 10 12 15 18] [ 4 8 5 10 6 12]
版权声明:本页面内容旨在传播知识,为用户自行发布,若有侵权等问题请及时与本网联系,我们将第一时间处理。E-mail:284563525@qq.com