在Pandas系列中把多索引串联成单一索引
在这篇文章中,我们将看到如何在Pandas系列中把多个索引串联到一个单一的索引。多索引是指拥有多个同名的索引。
创建一个样本系列。
# importing pandas module import pandas as pd import numpy as np # Creating series data for address details index_values = pd.Series([('sravan', 'address1'), ('sravan', 'address2'), ('sudheer', 'address1'), ('sudheer', 'address2')]) # assigning values with integers data = pd.Series(np.arange(1, 5), index=index_values) # display data print(data)
输出:
连接两个或更多的数据被称为连接(concatenation)。在这里,我们将使用map函数来连接索引。
语法:
map(fun, iter)
- fun: 函数
- iter: 迭代。
下面是各种例子,描述了如何在Series中把多个索引串联成一个索引。
示例 1:
这段代码解释了基于多指数的地址连接成一个。
# importing pandas module import pandas as pd # Creating series data for address details index_values = pd.Series([('sravan', 'address1'), ('sravan', 'address2'), ('sudheer', 'address1'), ('sudheer', 'address2')]) # assigning values with integers data = pd.Series(np.arange(1, 5), index=index_values) # display data print(data) # mapping with data using '_' symbol with join data1 = data.index.map('_'.join) print(data1)
输出:
示例 2:
这段代码是对所有给定的相同名称,但在一个元组中传递不同价值的例子。
# importing pandas module import pandas as pd # importing numpy module import numpy as np # Creating series data for address details with same name. index_values = pd.Series([('sravan', 'address1'), ('sravan', 'address2'), ('sravan', 'address3'), ('sravan', 'address4')]) # assigning values with integers data = pd.Series(np.arange(1, 5), index=index_values) # display data print(data) # mapping with data using '_' symbol with join data1 = data.index.map('_'.join) print(data1)
输出:
示例 3:
这段代码给出了一个关于嵌套列表数据结构中的多个用户的演示。
# importing pandas module import pandas as pd # importing numpy module import numpy as np # Creating series data for address details # with same name with nested lists. index_values = pd.Series([['sravan', 'address1'], ['sravan', 'address2'], ['sravan', 'address3'], ['sravan', 'address4'], ['vani', 'address5'], ['vani', 'address6'], ['vani', 'address7'], ['vani', 'address8']]) # assigning values with integers data = pd.Series(np.arange(1, 9), index=index_values) # display data print(data) # mapping with data using '_' symbol with join data1 = data.index.map('_'.join) print(data1)
输出:
示例 4:
这段代码解释了学院的数据,涉及到由’/’操作符分隔的嵌套列表中传递的地址。
# importing pandas module import pandas as pd # importing numpy module import numpy as np # Creating series data for address details w.r.t # college names with same name with nested lists. index_values = pd.Series([['sravan', 'address1', 'vignan'], ['sravan', 'address2', 'vignan'], ['sravan', 'address3', 'vignan'], ['sravan', 'address4', 'vignan'], ['vani', 'address5', 'vignan lara'], ['vani', 'address6', 'vignan lara'], ['vani', 'address7', 'vignan lara'], ['vani', 'address8', 'vignan lara']]) # assigning values with integers data = pd.Series(np.arange(1, 9), index=index_values) # display data print(data) # mapping with data using '/' symbol with join data1 = data.index.map('/'.join) print(data1)
输出:
版权声明:本页面内容旨在传播知识,为用户自行发布,若有侵权等问题请及时与本网联系,我们将第一时间处理。E-mail:284563525@qq.com